Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Given,
[tex]x - \frac{1}{x} = 5[/tex]
Squaring both sides, we get
[tex] = > (x - \frac{1}{x} )^{2} = {(5)}^{2} [/tex]
By using the identity: (a - b)² = a² - 2ab + b², we have:
[tex] = > {x}^{2} - 2(x)( \frac{1}{x} ) + (\frac{1}{x} ) ^{2} = 25 \\ = > {x}^{2} - 2 + \frac{1}{ {x}^{2} } = 25[/tex]
Now, transpose -2 to the right hand side.
[tex] = > {x}^{2} + \frac{1}{ {x}^{2} } = 25 + 2 \\ = > {x}^{2} + \frac{1}{ {x}^{2} } = 27[/tex]
Answer:
27
Hope you could understand.
If you have any query, feel free to ask.
Given: {x -(1/x)} = 5
Asked: = {x² + (1/x²)} = ?
Solution:
Given that:
{x - (1/x)} = 5
On squaring both sides then
→ {x - (1/x)}² = (5)²
Now
Compare the LHS with (a-b)², we get
a = x and b = 1/x
Using identity (a -b)² = a² - 2ab + b² , we get
→ {x - (1/x)}² = (5)²
→ x² - 2(x)(1/x) + (1/x)² = 5*5
Multiply the number on RHS.
→ x² - 2(x)(1/x) + (1/x²) = 25
Cancel both “x” on RHS. Because they are in multiple sign.
→ x² - 2 + (1/x²) = 25
Shift the number 2 from LHS to RHS, changing it's sign.
→ x² + (1/x²) = 25 + 2
Add the numbers on RHS.
→ x² + (1/x²) = 27
Therefore, {x² + (1/x²)} = 27
Answer: Hence, the value of {x² + (1/x²)} = 27
Please let me know if you have any other questions.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.