Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
168 trumpets for $1702
Step-by-step explanation:
Profit is the measure to be maximized. We are given revenue and cost relationships as a function of units, x (trumpets). Profit is the difference:
Profit = Revenue[R(x)] - Cost[C(x)]
Profit = (76x – 0.25x^2) - (-7.75x + 5,312.5)
Profit = 76x - 0.25x^2 + 7.75x - 5,312.5
Profit = 76x - 0.25x^2 + 7.75x - 5,312.5
Profit = - 0.25x^2 + 83.75x - 5312.5
At this point we can find the trumpets needed for maximum profit by either of two approaches: algebraic and graphing. I'll do both.
Mathematically
The first derivative will give us the slope of this function for any value of x. The maximum will have a slope of zero (the curve changes direction at that point). Take the first derivative and set that equal to 0 and solve for x.
First derivative:
d(Profit)/dx = - 2(0.25x) + 83.75
d(Profit)/dx = - 0.50x + 83.75
0 = - 0.50x + 83.75
0.50x = 83.75
x = 167.5 trumpets
Graphically
Plot the profit function and look for the maximum. The graph is attached. The maximum is 167.5 trumpets.
Round up or down to get a whole trumpet. I'll go up: 168 trumpets.
Maximum Profit
Solve the profit equation for 168 trumpets:
Profit = - 0.25x^2 + 83.75x - 5312.5
Profit = - 0.25(168)^2 + 83.75(168) - 5312.5
Profit = $1702
![View image rspill6](https://us-static.z-dn.net/files/ddf/689dd1543bd6affc3fe82fae469bfa9b.jpg)
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.