Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
so we know that θ is between π and 3π/2, which is another of saying that θ is in the III Quadrant, and obviously its cosine will be negative.
we also know that cos(θ/2) is negative, well, that rules out the I and IV Quadrants, so most likely θ/2 is on the II Quadrant, since is smaller than θ anyway, and on the II Quadrant as we know, the sine or "y" value is positive.
[tex]\stackrel{\textit{Half-Angle Identities}}{ sin\left(\cfrac{\theta}{2}\right)=\pm \sqrt{\cfrac{1-cos(\theta)}{2}} \qquad\qquad cos\left(\cfrac{\theta}{2}\right)=\pm \sqrt{\cfrac{1+cos(\theta)}{2}}} \\\\[-0.35em] ~\dotfill\\\\ cos\left(\cfrac{\theta}{2}\right)=\pm \sqrt{\cfrac{1+\left(-\frac{1}{9} \right)}{2}}\implies cos\left(\cfrac{\theta}{2}\right)=\pm \sqrt{\cfrac{1-\left(\frac{1}{9} \right)}{2}}[/tex]
[tex]cos\left(\cfrac{\theta}{2}\right)=-\sqrt{\cfrac{~~ \frac{8}{9} ~~}{2}}\implies cos\left(\cfrac{\theta}{2}\right)=-\sqrt{\cfrac{4}{9}}\implies cos\left(\cfrac{\theta}{2}\right)=-\cfrac{2}{3} \\\\[-0.35em] ~\dotfill[/tex]
[tex]sin\left(\cfrac{\theta}{2}\right)=\pm \sqrt{\cfrac{1-\left( -\frac{1}{9} \right)}{2}}\implies sin\left(\cfrac{\theta}{2}\right)=+ \sqrt{\cfrac{~~\frac{10}{9}~~}{2}}\implies sin\left(\cfrac{\theta}{2}\right)=+\cfrac{\sqrt{5}}{3} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \stackrel{~~~a_1~\hfill a_2~~~}{\left( -\cfrac{2}{3}~~,~~ \cfrac{\sqrt{5}}{3}\right)}~\hfill[/tex]
Answer:
(-2/3, (√5)/3)
Step-by-step explanation:
We can use the half-angle identities to find the values of the sine and cosine of the desired angle. The desired angle is a 2nd-quadrant angle, so the sine is positive, and the cosine is negative.
[tex]\sin{\left(\dfrac{\theta}{2}\right)}=\sqrt{\dfrac{1-\cos{(\theta)}}{2}}=\sqrt{\dfrac{1-(-1/9)}{2}}=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt{5}}{3}\\\\\cos{\left(\dfrac{\theta}{2}\right)}=-\sqrt{\dfrac{1+\cos{(\theta)}}{2}}=-\sqrt{\dfrac{1+(-1/9)}{2}}=-\sqrt{\dfrac{4}{9}}=-\dfrac{2}{3}[/tex]
The coordinates of the terminal point are ...
[tex](a_1,a_2)=\left(\cos{\dfrac{\theta}{2}},\sin{\dfrac{\theta}{2}}\right)=\left(-\dfrac{2}{3},\dfrac{\sqrt{5}}{3}\right)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.