At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
So, based on the angle values that have been found, the angle of elevation of the nozzle can be 16° or 74°.
Introduction
Hi ! This question can be solved using the principle of parabolic motion. Remember ! When the object is moving parabolic, the object has two points, namely the highest point (where the resultant velocity is 0 m/s in a very short time) and the farthest point (has the resultant velocity equal to the initial velocity). At the farthest distance, the object will move with the following equation :
[tex] \boxed{\sf{\bold{x_{max} = \frac{(v_0)^2 \cdot \sin(2 \theta)}{g}}}} [/tex]
With the following condition :
- [tex] \sf{x_{max}} [/tex] = the farthest distance of the parabolic movement (m)
- [tex] \sf{v_0} [/tex] = initial speed (m/s)
- [tex] \sf{\theta} [/tex] = elevation angle (°)
- g = acceleration due to gravity (m/s²)
Problem Solving :
We know that :
- [tex] \sf{x_{max}} [/tex] = the farthest distance of the parabolic movement = 2.5 m
- [tex] \sf{v_0} [/tex] = initial speed = 6.8 m/s
- g = acceleration due to gravity = 9.8 m/s²
What was asked :
- [tex] \sf{\theta} [/tex] = elevation angle = ... °
Step by Step :
- Find the equation value [tex] \sf{\bold{theta}} [/tex] (elevation angle)
[tex] \sf{x_{max} = \frac{(v_0)^2 \cdot \sin(2 \theta)}{g}} [/tex]
[tex] \sf{x_{max} \cdot g = (v_0)^2 \cdot \sin(2 \theta)} [/tex]
[tex] \sf{\frac{x_{max} \cdot g}{(v_0)^2} = \sin(2 \theta)} [/tex]
[tex] \sf{\frac{2.5 \cdot 9.8}{(6.8)^2} = \sin(2 \theta)} [/tex]
[tex] \sf{\frac{2.5 \cdot 9.8}{(6.8)^2} = \sin(2 \theta)} [/tex]
[tex] \sf{\frac{24.5}{46.24} = \sin(2 \theta)} [/tex]
[tex] \sf{\sin(2 \theta) \approx 0.53} [/tex]
[tex] \sf{\cancel{\sin}(2 \theta) \approx \cancel{\sin}(32^o)} [/tex]
- Find the angle value of the equation by using trigonometric equations. Provided that the parabolic motion has an angle of elevation 0° ≤ x ≤ 90°.
First Probability
[tex] \sf{2 \theta = 32^o + k \cdot 360^o} [/tex]
[tex] \sf{\theta = 16^o + k \cdot 180^o} [/tex]
→ [tex] \sf{k = 0 \rightarrow 16^o + 0 = 16^o} [/tex] (T)
→ [tex] \sf{k = 1 \rightarrow 16^o + 180^o = 196^o} [/tex] (F)
Second Probability
[tex] \sf{2 \theta = (180^o - 32^o) + k \cdot 360^o} [/tex]
[tex] \sf{2 \theta = 148^o + k \cdot 360^o} [/tex]
[tex] \sf{\theta = 74^o + k \cdot 180^o} [/tex]
→ [tex] \sf{k = 0 \rightarrow 74^o + 0 = 74^o} [/tex] (T)
→ [tex] \sf{k = 1 \rightarrow 74^o + 180^o = 254^o} [/tex] (F)
[tex] \boxed{\sf{\therefore \theta \{16^o , 74^o\} }}[/tex]
Conclusion
So, based on the angle values that have been found, the angle of elevation of the nozzle can be 16° or 74°.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.