Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Hi there!
We can use the conservation of angular momentum to solve.
[tex]L_i = L_f\\\\I\omega_i = I\omega_f[/tex]
I = moment of inertia (kgm²)
ω = angular velocity (rad/sec)
Recall the following equations for the moment of inertia.
[tex]\text{Solid cylinder:} I = \frac{1}{2}MR^2\\\\\text{Object around center:} = MR^2[/tex]
Begin by converting rev/sec to rad sec:
[tex]\frac{0.17rev}{s} * \frac{2\pi rad}{1 rev} = 1.068 \frac{rad}{s}[/tex]
According to the above and the given information, we can write an equation and solve for ωf.
[tex]1.068(\frac{1}{2}(34)(1.6)^2 + (79)(1.6)^2) = \omega_f(\frac{1}{2}(34)(1.6^2) + 79(0^2))\\\\\omega_f = \boxed{6.03 \frac{rad}{sec}}[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.