Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Here is my written solution, I hope it helps you :)
Alternatively to this you could use the equation of 7500 x 1.06^t and use trial and error by replacing the value of t until you go beyond £10000.
Alternatively to this you could use the equation of 7500 x 1.06^t and use trial and error by replacing the value of t until you go beyond £10000.
Answer: 5 years
==========================================
Work Shown:
[tex]A = P*(1+r/n)^{n*t}\\\\10,000 = 7500*(1+0.06/1)^{1*t}\\\\10,000/7500 = (1.06)^{t}\\\\1.33333 \approx (1.06)^{t}\\\\\text{Log}(1.33333) \approx \text{Log}\left((1.06)^{t}\right)\\\\\text{Log}(1.33333) \approx t*\text{Log}(1.06)\\\\t \approx \frac{\text{Log}(1.33333)}{\text{Log}(1.06)}\\\\t \approx 4.937[/tex]
The first equation shown is the compound interest formula. I'm assuming that the bank is compounding annually (which means n = 1).
Whenever we have an exponent we want to solve for, we'll involve logs. A good phrase to remember is "If the exponent is in the trees, then log it down".
It takes approximately t = 4.937 years for the £7500 to become £10,000.
Round up to the nearest year to get t = 5 so we ensure that Brian has more than £10,000.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.