Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Find the equation of the line with the given properties. Express the equation in general form or​ slope-intercept form.
Perpendicular to the line 3x+y=7 contains points (3,-3)


Sagot :

keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above

[tex]3x+y=7\implies y=\stackrel{\stackrel{m}{\downarrow }}{-3} x+7\impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]

therefore

[tex]\stackrel{~\hspace{5em}\textit{perpendicular lines have \underline{negative reciprocal} slopes}~\hspace{5em}} {\stackrel{slope}{-3\implies \cfrac{-3}{1}} ~\hfill \stackrel{reciprocal}{\cfrac{1}{-3}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{1}{-3}\implies \cfrac{1}{3}}}[/tex]

so we're really looking for the equation of a line whose slope is 1/3 and passes through (3 , -3)

[tex](\stackrel{x_1}{3}~,~\stackrel{y_1}{-3})\qquad \qquad \stackrel{slope}{m}\implies \cfrac{1}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-3)}=\stackrel{m}{\cfrac{1}{3}}(x-\stackrel{x_1}{3}) \\\\\\ y+3=\cfrac{1}{3}x-1\implies y=\cfrac{1}{3}x-4[/tex]

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.