Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above
[tex]3x+y=7\implies y=\stackrel{\stackrel{m}{\downarrow }}{-3} x+7\impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]
therefore
[tex]\stackrel{~\hspace{5em}\textit{perpendicular lines have \underline{negative reciprocal} slopes}~\hspace{5em}} {\stackrel{slope}{-3\implies \cfrac{-3}{1}} ~\hfill \stackrel{reciprocal}{\cfrac{1}{-3}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{1}{-3}\implies \cfrac{1}{3}}}[/tex]
so we're really looking for the equation of a line whose slope is 1/3 and passes through (3 , -3)
[tex](\stackrel{x_1}{3}~,~\stackrel{y_1}{-3})\qquad \qquad \stackrel{slope}{m}\implies \cfrac{1}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-3)}=\stackrel{m}{\cfrac{1}{3}}(x-\stackrel{x_1}{3}) \\\\\\ y+3=\cfrac{1}{3}x-1\implies y=\cfrac{1}{3}x-4[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.