Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
see below
Step-by-step explanation:
Part-A:
we want to find the quotient and remainder when 4x²+4x is divided by 2x+1 in other words we want to find the quotient and remainder when:
[tex] \displaystyle \frac{4 {x}^{2} + 4x}{2x + 1} [/tex]
To do so, I would prefer using simple algebra rather than using troublesome polynomial long division. anyway dividing it would yield the form [tex]p(x)+\frac{k}{q(x)}[/tex] where:
- p(x) is the quotation
- k is the remainder
- q(x) is the divisor
Therefore,In order to derive the quotation and remainder, rewrite the numerator which yields:
[tex] \displaystyle \frac{(2x + 1 {)}^{2} - 1}{2x + 1} \\ \\ \frac{(2x + 1 {)}^{2} - 1}{2x + 1} \\ \\ \frac{(2x + 1 {)}^{2} }{2x + 1} + \frac{ - 1}{2x + 1} \\ \\ \boxed{2x + 1 + \frac{ - 1}{2x + 1} }[/tex]
Compering it to the mentioned form, we can consider:
- 2x+1, The quotient
- -1, The remainder
Part-B:
we are asked to show that,
[tex] \displaystyle \int _{0} ^{1} \frac{4 {x}^{2} + 4x}{2x + 1} \, dx = 2 - \frac{1}{2} \ln(3) [/tex]
Well,we can start with integrating the indefinite integral and the first step to do so is to decompose the fraction, integrand. As we have already done it in part-a, we can simply skip the steps:
[tex] \displaystyle \implies \int 2x + 1 + \frac{ - 1}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
utilizing sum integration rule yields:
[tex] \displaystyle \implies \int 2x \, dx+ \int 1 \,dx+ \int \frac{ - 1}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
apply constant integration rule which yields:
[tex] \displaystyle \implies 2\int x \, dx+ \int 1 \,dx - \int \frac{ 1}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
recall that,
- integration of xⁿ is xⁿ+¹/n+1
- integration of a constant,k is kx
so we derive from utilizing the rules is that,
[tex] \displaystyle \implies 2 \cdot\frac{ {x}^{2} }{2} + x- \int \frac{ 1}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
Now integrating [tex]\frac{1}{2x+1}[/tex] would require u-substitution . In order to perform the substitution, let
- u=2x+1
- u'=2 dx
To perform the substitution multiply the integrand and integral by 2 and ½ respectively:
[tex] \displaystyle \implies { {x}^{2} }+ x- \frac{1}{2} \int \frac{ 2}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
perform the substitution:
[tex] \displaystyle \implies x^2+ x- \frac{1}{2} \int \frac{ 1}{u} \, du \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
integrating yields:
[tex] \displaystyle \implies x^2+ x- \frac{1}{2} \ln(u) \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
back-substitute:
[tex] \displaystyle \implies x^2 + x- \frac{1}{2} \ln(2x + 1) \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
To evaluate the define integral , return the limits of integration:
[tex] \displaystyle \implies x^2 \Bigg | _{0} ^{1} + x \Bigg | _ {0}^{1} - \frac{1}{2} \ln(2x + 1)\Bigg | _ {0}^{1} \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]
remember fundamental theorem
- [tex]f(x)\Bigg | _ {a}^{b} = f(b) - f(a)[/tex]
utilize it and simplify which yields:
[tex] \displaystyle \implies 1 + 1 - \frac{1}{2} \ln(3) \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) \\ \\ 2 - \frac{1}{2} \ln(3)\stackrel{ \checkmark }{= }2 - \frac{1}{2} \ln(3) \\ \\ \rm \rightarrow \: hence,showed[/tex]
and we are done!
The quotient is ( 2 x + 1 ) and the remainder is - 1
What is quotient and reminder?
Quotient is the result gotten from division while remainder refers to leftover after division
(4x² + 4x) / (2x + 1)
Using long division shows that
(2x + 1) (2x + 1) - 1
therefore the division has a
- quotient of ( 2 x + 1 ) and
- remainder of - 1
Integration
[tex]\int\limits^1_0 {\frac{4x^{2} + 4x}{2x + 1} } \, dx[/tex]
[tex]\int\limits^1_0 {\frac{4x^{2} + 4x}{2x + 1} } \, dx = \int\limits^1_0 {\frac{(2x + 1)^{2} - 1 }{2x + 1} } \, dx[/tex]
[tex]= \int\limits^1_0 {\frac{(2x + 1)^{2} }{2x + 1} \frac{-1}{2x + 1} } \, dx[/tex]
[tex]\int\limits^1_0 {2x + 1} \, dx + \int\limits^1_0 {\frac{-1}{2x + 1} } \, dx[/tex]
[tex]= \int\limits^1_0 {2x} \, dx + \int\limits^1_0 {1} \, dx -\int\limits^1_0 {\frac{1}{2x +1} } \, dx[/tex]
[tex]= x^{2} \left \{ {{1} \atop {0} \right.+ x\left \{ {{1} \atop {0}} \right. - \frac{1}{2} \int\limits^1_0 {\frac{2}{2x + 1} \, dx[/tex]
applying integration by substitution
[tex]let u = 2x + 1\\dx = 2 du[/tex]
[tex]= x^{2} \left \{ {{1} \atop {0} \right.+ x\left \{ {{1} \atop {0}} \right. - \frac{1}{2} \int\limits^1_0 {\frac{2}{u} \, du[/tex]
[tex]= 1 + 1 - \frac{1}{2} In (u)[/tex][tex]= 2 - \frac{1}{2} In (2x+1)\left \{ {{1} \atop {0}} \right.[/tex]
[tex]= 2 - \frac{1}{2} In (2(1-0)+1)[/tex]
[tex]= 2 - \frac{1}{2} In (3)[/tex]
Therefore proved
[tex]\int\limits^1_0 {\frac{4x^{2} + 4x}{2x + 1} } \, dx = 2 - \frac{1}{2} In 3[/tex]
Read more on Integration by substitution here: https://brainly.com/question/26568631
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.