Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The net forces on the box parallel and perpendicular to the surface, respectively, are
∑ F[para] = (250 N) cos(-30.0°) - F[friction] = (50 kg) a
and
∑ F[perp] = F[normal] + (250 N) sin(-30.0°) - F[weight] = 0
where a is the acceleration of the box. (We ultimately don't care what this acceleration is, though.)
To decide whether the friction here is static or kinetic, consider that when the box is at rest, the net force perpendicular to the floor is
∑ F[perp] = F[normal] - F[weight] = 0
so that, while at rest,
F[normal] = (50 kg) g = 490 N
Then with µ[s] = 0.40, the maximum magnitude of static friction would be
F[s. friction] = 0.40 (490 N) = 196 N
so that the box will begin to slide if it's pushed by a force larger than this.
The horizontal component of our pushing force is
(250 N) cos(-30.0°) ≈ 217 N
so the box will move in our case, and we will have kinetic friction with µ[k] = 0.30.
Solve the ∑ F[perp] = 0 equation for F[normal] :
F[normal] + (250 N) sin(-30.0°) - F[weight] = 0
F[normal] - 125 N - 490 N = 0
F[normal] = 615 N
Then the kinetic friction felt by the box has magnitude
F[k. friction] = 0.30 (615 N) = 184.5 N ≈ 185 N
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.