Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer: f(x) = x⁵ – 8x⁴ + 16x³
Does not cross the x-axis at x = 4.
Crosses the x-axis at x = 0
This is about the end behavior of a graph of a function at the end of the x-axis.
We are given the function;
f(x) = x⁵ - 8x⁴ + 16x³
A) As x approaches negative infinity -∞, x⁵ will also approach negative infinity -∞. This is because when we raise a negative number to the power of an odd number, the result remains negative.
B) As x approaches positive infinity +∞, x⁵ will also approach positive infinity -∞. This is because when we raise a positive number to the power of an odd number, the result remains positive.
Let's now find the roots of this function;
f(x) = x⁵ - 8x⁴ + 16x³
Let's factorize it first to get;
f(x) = x³(x² – 8x + 16)(x² – 8x + 16) is a perfect square trinomial and can be expressed as (x – 4)(x - 4).
Thus;f(x) = x³ (x – 4)(x - 4)
C) Since we have found the factorized form to be;
f(x) = x³ (x – 4)(x - 4)
The roots are at f(x) = 0;
The roots are; x³ = 0; (x – 4) = 0 ; (x - 4) = 0
This means the roots of f(x) are; x=0 and x=4. x = 4
This means the graph has a repeated root and so it will touch the x-axis but not at the repeated root of x=4.
D) Since it 0 is a root and it does not cross at x = 4, the graph will cross at x = 0.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.