Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Using the binomial distribution, it is found that there is a 0.9513 = 95.13% probability that less than three of these mortgages are delinquent.
For each mortgage, there are only two possible outcomes, either they are delinquent or they are not. The probability of a mortgage being delinquent is independent of any other mortgage, hence the binomial distribution is used to solve this question.
What is the binomial distribution formula?
The formula is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 11% of mortgages were delinquent last year, hence p = 0.11.
- A random sample of eight mortgages was selected, hence n = 8.
The probability that less than three of these mortgages are delinquent is:
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{8,0}.(0.11)^{0}.(0.89)^{8} = 0.3937[/tex]
[tex]P(X = 1) = C_{8,1}.(0.11)^{1}.(0.89)^{7} = 0.3892[/tex]
[tex]P(X = 2) = C_{8,2}.(0.11)^{2}.(0.89)^{6} = 0.1684[/tex]
Then:
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.3937 + 0.3892 + 0.1684 = 0.9513[/tex]
0.9513 = 95.13% probability that less than three of these mortgages are delinquent.
You can learn more about the binomial distribution at https://brainly.com/question/24863377
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.