Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Using conditional probability, it is found that there is a 0.052 = 5.2% probability that a randomly chosen U. S. President is left-handed and a democrat.
What is Conditional Probability?
Conditional probability is the probability of one event happening, considering a previous event. The formula is:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
- P(B|A) is the probability of event B happening, given that A happened.
- [tex]P(A \cap B)[/tex] is the probability of both A and B happening.
- P(A) is the probability of A happening.
In this problem, the events are:
- Event A: President is left-handed.
- Event B: President is a democrat.
Researching the problem on the internet, it is found that:
- 40% of the presidents were left-handed, hence P(A) = 0.4.
- If a president is left-handed, there is a 13% chance that the president is a Democrat, hence P(B|A) = 0.13.
Then:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
[tex]0.13 = \frac{P(A \cap B)}{0.4}[/tex]
[tex]P(A \cap B) = 0.13(0.4)[/tex]
[tex]P(A \cap B) = 0.052[/tex]
0.052 = 5.2% probability that a randomly chosen U. S. President is left-handed and a democrat.
You can learn more about conditional probability at https://brainly.com/question/15536019
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.