Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Recall that √x has a domain of x ≥ 0.
So, f(x) is defined as long as
(x + 1)/(x - 1) ≥ 0
• We have equality when x = -1
• Otherwise (x + 1)/(x - 1) is positive if both x + 1 and x - 1 are positive, or both are negative:
[tex]\begin{cases}x+1>0 \implies x>-1 \\ x-1>0 \implies x>1\end{cases} \implies x > 1[/tex]
[tex]\begin{cases}x+1<0 \implies x<-1 \\ x-1<0 \implies x<1\end{cases} \implies x<-1[/tex]
Then the domain of f(x) is
x > 1 or x ≤ -1
On the other hand, g(x) is defined by two individual square root expressions with respective domains of
• x + 1 ≥ 0 ⇒ x ≥ -1
• x - 1 ≥ 0 ⇒ x ≥ 1
but note that g(1) is undefined, so we omit it from the second domain.
Then g(x) is defined so long as both x ≥ -1 *and* x > 1 are satisfied, which means its domain is
x > 1
f(x) and g(x) have different domains, so they are not the same function.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.