Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The standard deviation of a sample is the square root of the variance
- The variance is 5.5
- The standard deviation is 2.35
How to determine the variance
The sample is given as: 11, 6, 10, 6, and 7
Start by calculating the mean
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{11+ 6+ 10+ 6+ 7}{5}[/tex]
[tex]\bar x = 8[/tex]
The variance is then calculated as:
[tex]\sigma^2 = \frac{\sum(x - \bar x)^2}{n -1}[/tex]
This gives
[tex]\sigma^2 = \frac{(11 - 8)^2 + (6 - 8)^2 + (10 - 8)^2 + (6 - 8)^2+(7 - 8)^2}{5 -1}[/tex]
[tex]\sigma^2 = 5.5[/tex]
Hence, the variance is 5.5
How to calculate the standard deviation
In (a), we have:
[tex]\sigma^2 = 5.5[/tex]
Take the square roots of both sides
[tex]\sqrt{\sigma^2} = \sqrt{5.5[/tex]
[tex]\sigma = 2.35[/tex]
Hence, the standard deviation is 2.35
Read more about variance and standard deviation at:
https://brainly.com/question/15858152
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.