Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Solution:
Step-1: Find the slope of the line.
Formula of slope: y₂ - y₁/x₂ - x₁
- y₂ - y₁/x₂ - x₁ = Slope
- => -2 - (-5)/-8 - (-4) = Slope
- => -2 + 5/-8 + 4 = Slope
- => 3/-4 = Slope
Step-2: Use the point slope formula to determine the slope.
Point slope form formula: y - y₁ = m(x - x₁)
- y - y₁ = m(x - x₁) = Equation of line
- => y - (-5) = -3/4{x - (-4)} = Equation of line
- => y + 5 = -3/4{x + 4} = Equation of line
- => y + 5 = -3x/4 - 3 = Equation of line
- => y = -3x/4 - 8 = Equation of line
The equation of the line is y = -3x/4 - 8.
To find the equation, First step is to find the slope which we can use in the formula and then we will find the equation using the specific formula...
Finding slope ⤵️
[tex] \boxed{ \sf \:m = \frac{ y_{2} - y_{1} }{ x_{2} - x_{1}} }[/tex]
- (x1,y1) = (-4,-5)
- (x2,y2) = (-8,-2)
[tex] \tt \to \: m = \frac{ - 2-( - 5)}{ - 8 -(- 4)} [/tex]
[tex] \tt \to \: m = \frac{ -2+5}{ -8+4} [/tex]
[tex] \tt \to \: m = - \frac{3}{4} [/tex]
Now, Put the values in the formula used to find the equation ⤵️
[tex] \boxed{ \sf \:y - y_{1} = m(x - x_{1}) }[/tex]
- (x1,y1) = (-4,-5)
[tex] \tt \nrightarrow \: y - ( - 5) = - \frac{3}{4} (x - ( - 4))[/tex]
[tex] \tt \nrightarrow \: y + 5 = - \frac{3}{4} (x + 4)[/tex]
[tex] \tt \nrightarrow \: y + 5 = - \frac{3}{4} x - 3[/tex]
[tex] \tt \nrightarrow \: y = - \frac{3}{4} x - 3 - 5[/tex]
[tex] \bf\nrightarrow \: y = - \frac{3}{4} x - 8[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.