Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is an equation of the line that passes through the points (-4, -5) and
(-8, -2)?


Sagot :

Solution:

Step-1: Find the slope of the line.

Formula of slope: y₂ - y₁/x₂ - x₁

  • y₂ - y₁/x₂ - x₁ = Slope
  • => -2 - (-5)/-8 - (-4) = Slope
  • => -2 + 5/-8 + 4 = Slope
  • => 3/-4 = Slope

Step-2: Use the point slope formula to determine the slope.

Point slope form formula: y - y₁ = m(x - x₁)

  • y - y₁ = m(x - x₁) = Equation of line
  • => y - (-5) = -3/4{x - (-4)} = Equation of line
  • => y + 5 = -3/4{x + 4} = Equation of line
  • => y + 5 = -3x/4 - 3 = Equation of line
  • => y = -3x/4 - 8 = Equation of line

The equation of the line is y = -3x/4 - 8.

To find the equation, First step is to find the slope which we can use in the formula and then we will find the equation using the specific formula...

Finding slope ⤵️

[tex] \boxed{ \sf \:m = \frac{ y_{2} - y_{1} }{ x_{2} - x_{1}} }[/tex]

  • (x1,y1) = (-4,-5)
  • (x2,y2) = (-8,-2)

[tex] \tt \to \: m = \frac{ - 2-( - 5)}{ - 8 -(- 4)} [/tex]

[tex] \tt \to \: m = \frac{ -2+5}{ -8+4} [/tex]

[tex] \tt \to \: m = - \frac{3}{4} [/tex]

Now, Put the values in the formula used to find the equation ⤵️

[tex] \boxed{ \sf \:y - y_{1} = m(x - x_{1}) }[/tex]

  • (x1,y1) = (-4,-5)

[tex] \tt \nrightarrow \: y - ( - 5) = - \frac{3}{4} (x - ( - 4))[/tex]

[tex] \tt \nrightarrow \: y + 5 = - \frac{3}{4} (x + 4)[/tex]

[tex] \tt \nrightarrow \: y + 5 = - \frac{3}{4} x - 3[/tex]

[tex] \tt \nrightarrow \: y = - \frac{3}{4} x - 3 - 5[/tex]

[tex] \bf\nrightarrow \: y = - \frac{3}{4} x - 8[/tex]