Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The count of 4-digit personal identification numbers possible if the number cannot contain a zero is given by: Option B: 6561
What is the rule of product in combinatorics?
If a work A can be done in p ways, and another work B can be done in q ways, then both A and B can be done in [tex]p \times q[/tex] ways.
Remember that this count doesn't differentiate between order of doing A first or B first then doing other work after the first work.
Thus, doing A then B is considered same as doing B then A
For the given case, there are 4 digit locks, each of them can be from {1,2,3,4,5,6,7,8,9}
So each one has 9 options to choose from.
Thus, using the rule of product, we get the total possible personal identification numbers as: [tex]9 \times 9 \times 9 \times 9= 6561[/tex]
Thus, the count of 4-digit personal identification numbers possible if the number cannot contain a zero is given by: Option B: 6561
Learn more about rule of product here:
https://brainly.com/question/2763785
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.