Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The diameter of Christy's pool is 4 times larger than the other .-.
How to find the relation between the radius of each pool?
We know that for a circle of radius R the area is given by:
A = π*R^2
Let's say that:
- R is the radius of Christy's pool
- R' is the radius of Emily's pool.
Then we have the corresponding areas.
- A = π*R^2
- A' = π*R'^2
We know that:
A = 16*A'
Replacing the equations, we get:
π*R^2 = 16*(π*R'^2)
R^2 = 16*R'^2
If we apply the square root in both sides, we get:
√R^2 = √(16*R'^2)
R = 4*R'
This means that the radius of Christy's pool is 4 times larger than the one of Emily's pool.
And the same is for the diameter (twice the radius).
D = 2*R
D' = 2*R'
Then:
D = 2*R = 2*(4*R') = 4*(2*R') = 4*D'
The diameter of Christy's pool is 4 times larger than the other diameter.
If you want to learn more about circles, you can read:
https://brainly.com/question/25306774
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.