Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
This problem is providing the volume, temperature and pressure of a gas and asks for the number of moles at such conditions, which turns out to be 0.0160 mol.
Ideal gases
In chemistry, we study ideal gases, which are assumed to be perfectly spherical and with no relevant neither attractions nor repulsions among molecules, with the widely-known ideal gas equation relating volume, temperature, pressure and moles as follows:
[tex]PV=nRT[/tex]
Thus, knowing it is in a 0.300-L vessel at 15.0 °C and 157.6 kPa, one can solve for n in the previous equation to get:
[tex]n=\frac{PV}{RT}[/tex]
And plug in by making sure the pressure is in atmospheres and the temperature in kelvins:
[tex]n=\frac{157.6kPa*\frac{1atm}{101.325kPa}*0.300L}{(0.08206\frac{atm*L}{mol*K})*(15.0+273.15)K}\\\\n=0.0160mol[/tex]
Learn more about ideal gases: brainly.com/question/8711877
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.