Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The block's potential energy at the top of the incline (at a height h from the horizontal surface) is equal to its kinetic energy at the bottom of the incline, so that
mgh = 1/2 mv²
where v is its speed at the bottom of the incline. It follows that
v = √(2gh)
If the incline is 20.4 m long, that means the block has a starting height of
sin(15°) = h/(20.4 m) ⇒ h = (20.4 m) sin(15°) ≈ 5.2799 m
and so the block attains a speed of
v = √(2gh) ≈ 10.1728 m/s
The block then slides to a rest over a distance d. Kinetic friction exerts a magnitude F over this distance and performs an amount of work equal to Fd. By the work-energy theorem, this quantity is equal to the block's change in kinetic energy, so that
Fd = 0 - 1/2 mv² ⇒ d = (-1293.58 J)/F
By Newton's second law, the net vertical force on the block as it slides is
∑ F [vertical] = n - mg = 0
where n is the magnitude of the normal force, so that
n = mg = (25 kg) g = 245 N
and thus the magnitude of friction is
F = -0.16 (245 N) = -39.2 N
(negative since it opposes the block's motion)
Then the block slides a distance of
d = (-1293.58 J) / (-39.2 N) ≈ 32.9994 m ≈ 33 m
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.