Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Using the t-distribution, as we have the standard deviation for the sample, it is found that the the maximum error of estimate for the actual population mean for the height of Egyptian pyramids is of 47.01%.
What is a t-distribution confidence interval?
The confidence interval is:
[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- t is the critical value.
- n is the sample size.
- s is the standard deviation for the sample
The margin of error is:
[tex]M = t\frac{s}{\sqrt{n}}[/tex]
The critical value, using a t-distribution calculator, for a two-tailed 80% confidence interval, with 125 - 1 = 124 df, is t = 1.2884.
The other parameters are: [tex]\mu = 460.7, s = 4.1, n = 125[/tex].
Hence, the margin of error is of:
[tex]M = t\frac{s}{\sqrt{n}}[/tex]
[tex]M = 1.2884\frac{4.1}{\sqrt{125}}[/tex]
[tex]M = 0.47[/tex]
Hence, the maximum error of estimate for the actual population mean for the height of Egyptian pyramids is of 47.01%.
More can be learned about the t-distribution at https://brainly.com/question/16162795
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.