Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Please Help!!! All my points are on this.

The graph of a sinusoidal function has a maximum point at (0,10) and then intersects its midline at (π/4,4). Write the formula of the function, where x is entered in radians.

F(x) =


Sagot :

s1m1

Answer:

y = 6 sin(2x+π/2) +4

Step-by-step explanation:

Given:

-sinusoidal function

-maximum point at (0,10)

-intersects its midline at (π/4,4)

Build the function:

y = sin x , we start with this because is a sinusoidal function

y = sin (x+ π/2), to move the maximum on the y-axis where x= 0

y = sin (2x +π/2), to move the midline from π/2 to a π/4 we need

y = 4+ sin(2x+π/2) , to move the midline from (π/4, 0) to  a (π/4, 4)

y = 4+ 6 sin(2x+π/2), to move the max at (0,10), -because the midline is at 4 and the function max at 10 we need 10-4 = 6

View image s1m1