Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
We are given the trajectory of a projectile:
y=H+xtan(θ)−g2u2x2(1+tan2(θ)),
where H is the initial height, g is the (positive) gravitational constant and u is the initial speed. Since we are looking for the maximum range we set y=0 (i.e. the projectile is on the ground). If we let L=u2/g, then
H+xtan(θ)−12Lx2(1+tan2(θ))=0
Differentiate both sides with respect to θ.
dxdθtan(θ)+xsec2(θ)−[1Lxdxdθ(1+tan2(θ))+12Lx2(2tan(θ)sec2(θ))]=0
Solving for dxdθ yields
dxdθ=xsec2(θ)[xLtan(θ)−1]tan(θ)−xL(1+tan2(θ))
This derivative is 0 when tan(θ)=Lx and hence this corresponds to a critical number θ for the range of the projectile. We should now show that the x value it corresponds to is a maximum, but I'll just assume that's the case. It pretty obvious in the setting of the problem. Finally, we replace tan(θ) with Lx in the second equation from the top and solve for x.
H+L−12Lx2−L2=0.
This leads immediately to x=L2+2LH−−−−−−−−√. The angle θ can now be found easily.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.