Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
[tex]f(g(x))=x[/tex]
[tex]g(f^{-1}(x))=\dfrac{-1}{x-1}[/tex]
[tex]g^{-1}(x)=\dfrac{1}{1-x}[/tex]
Step-by-step explanation:
[tex]f(x)=\dfrac{1}{1-x} \ \ \textsf{and} \ \ g(x)=\dfrac{x-1}{x}[/tex]
[tex]f(g(x))=\dfrac{1}{1-(\frac{x-1}{x})}[/tex]
[tex]\implies f(g(x))=\dfrac{1}{\frac{x}{x}-\frac{(x-1)}{x}}[/tex]
[tex]\implies f(g(x))=\dfrac{1}{\frac{x-x+1}{x}}[/tex]
[tex]\implies f(g(x))=\dfrac{1}{\frac{1}{x}}[/tex]
[tex]\implies f(g(x))=x[/tex]
[tex]x=\dfrac{1}{1-y}[/tex]
[tex]\implies 1-y=\dfrac{1}{x}[/tex]
[tex]\implies y=1-\dfrac{1}{x}[/tex]
[tex]\implies f^{-1}(x)=1-\dfrac{1}{x}[/tex]
[tex]g(f^{-1}(x))=1-\dfrac{1}{1-\frac{1}{x}}[/tex]
[tex]\implies g(f^{-1}(x))=1-\dfrac{1}{\frac{x-1}{x}}[/tex]
[tex]\implies g(f^{-1}(x))=1-\dfrac{x}{x-1}[/tex]
[tex]\implies g(f^{-1}(x))=\dfrac{x-1-x}{x-1}[/tex]
[tex]\implies g(f^{-1}(x))=\dfrac{-1}{x-1}[/tex]
[tex]x=\dfrac{y-1}{y}[/tex]
[tex]\implies xy=y-1[/tex]
[tex]\implies 1=y-xy[/tex]
[tex]\implies 1=y(1-x)[/tex]
[tex]\implies y=\dfrac{1}{1-x}[/tex]
[tex]\implies g^{-1}(x)=\dfrac{1}{1-x}[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.