Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Using the binomial distribution, it is found that about 75 batteries each day are defective.
For each battery, there are only two possible outcomes, either it is defective, or it is not. The probability of a battery being defective is independent of any other battery, hence the binomial distribution is used to solve this question.
What is the binomial probability distribution?
It is the probability of exactly x successes on n repeated trials, with p probability of a success on each trial.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
In this problem:
- 3 out of 20 batteries are defective, hence p = 3/20 = 0.15.
- Each day, 500 batteries are produced, hence n = 500.
Then, the expected number of defective batteries in a day is given by:
E(X) = np = 500(0.15) = 75.
More can be learned about the binomial distribution at https://brainly.com/question/14424710
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.