Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Label the points A,B,C
- A = (1,2)
- B = (4,5)
- C = (8,9)
Let's find the distance from A to B, aka find the length of segment AB.
We use the distance formula.
[tex]A = (x_1,y_1) = (1,2) \text{ and } B = (x_2, y_2) = (4,5)\\\\d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\d = \sqrt{(1-4)^2 + (2-5)^2}\\\\d = \sqrt{(-3)^2 + (-3)^2}\\\\d = \sqrt{9 + 9}\\\\d = \sqrt{18}\\\\d = \sqrt{9*2}\\\\d = \sqrt{9}*\sqrt{2}\\\\d = 3\sqrt{2}\\\\[/tex]
Segment AB is exactly [tex]3\sqrt{2}[/tex] units long.
Now let's find the distance from B to C
[tex]B = (x_1,y_1) = (4,5) \text{ and } C = (x_2, y_2) = (8,9)\\\\d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\d = \sqrt{(4-8)^2 + (5-9)^2}\\\\d = \sqrt{(-4)^2 + (-4)^2}\\\\d = \sqrt{16 + 16}\\\\d = \sqrt{32}\\\\d = \sqrt{16*2}\\\\d = \sqrt{16}*\sqrt{2}\\\\d = 4\sqrt{2}\\\\[/tex]
Segment BC is exactly [tex]4\sqrt{2}[/tex] units long.
Adding these segments gives
[tex]AB+BC = 3\sqrt{2}+4\sqrt{2} = 7\sqrt{2}[/tex]
----------------------
Now if A,B,C are collinear then AB+BC should get the length of AC.
AB+BC = AC
Let's calculate the distance from A to C
[tex]A = (x_1,y_1) = (1,2) \text{ and } C = (x_2, y_2) = (8,9)\\\\d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\d = \sqrt{(1-8)^2 + (2-9)^2}\\\\d = \sqrt{(-7)^2 + (-7)^2}\\\\d = \sqrt{49 + 49}\\\\d = \sqrt{98}\\\\d = \sqrt{49*2}\\\\d = \sqrt{49}*\sqrt{2}\\\\d = 7\sqrt{2}\\\\[/tex]
AC is exactly [tex]7\sqrt{2}[/tex] units long.
Therefore, we've shown that AB+BC = AC is a true equation.
This proves that A,B,C are collinear.
For more information, check out the segment addition postulate.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.