Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
Given: △ABC, m∠B=90° AB=12, BC=16, BK ⊥ AC . Find: AC and BK.
Given: △ABC, m∠B=90°
Find: AC and BK.
Short leg 90 degrees Long leg Hypotenuse
AB=12 90 BC=16 AC= ?
AK = ? 90 BK = ? AB=12
AC = SQRT (AB*AB + BC*BC) = 20 [right triangle; Pythagorean Theorem]
Similar triangles:[Note: In diagram, share two angles. Therefore share three angles]
BK / 16 = AB / AC
BK / 16 = 12 / 20
BK = (3/5)16
BK = 48/5
another answer let see this
AB^2+BC^2=AC^2
12^2+16^2=AC^2
144+256=AC^2
400=AC^2
20=AC
# be careful#
ΔABC and ΔBKC are similar triangles, the missing measures are:
- AC = 20 units
- BK = 9.6 units.
What are Similar Triangles?
If two triangles are similar, their corresponding sides are proportional to each other.
When a segment of a right triangle intersects the hypotenuse, the triangles formed are similar to each other.
Thus, using Pythagorean Theorem:
AC = √(AB² + BC²)
Substitute
AC = √(12² + 16²)
AC = 20 units.
Find BK:
ΔABC ~ ΔBKC (similar right triangles)
Thus:
AB/BK = AC/BC
Substitute
12/Bk = 20/16
Cross multiply
BK = (16 × 12)/20
BK = 9.6
Therefore, ΔABC and ΔBKC are similar triangles, the missing measures are:
AC = 20 units
BK = 9.6 units.
Learn more about similar triangles on:
https://brainly.com/question/11899908
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.