Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Using the t-distribution, as we have the standard deviation for the sample, it is found that the 95% confidence interval estimate for the mean number of calories for servings of breakfast cereals is (195.3, 215.7).
What is a t-distribution confidence interval?
The confidence interval is:
[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]
In which:
- [tex]\overline{x}[/tex] is the sample mean.
- t is the critical value.
- n is the sample size.
- s is the standard deviation for the sample.
From the sample and the significance level of 0.05, we have that the parameters are given by:
[tex]\overline{x} = 205.5, s = 14.2, n = 10, t = 2.2622[/tex]
Hence:
[tex]\overline{x} - t\frac{s}{\sqrt{n}} = 205.5 - 2.2622\frac{14.2}{\sqrt{10}} = 195.3[/tex]
[tex]\overline{x} + t\frac{s}{\sqrt{n}} = 205.5 + 2.2622\frac{14.2}{\sqrt{10}} = 215.7[/tex]
The 95% confidence interval estimate for the mean number of calories for servings of breakfast cereals is (195.3, 215.7).
More can be learned about the t-distribution at https://brainly.com/question/16162795
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.