Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
By definition of the derivative,
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{t(x+h) - t(x)}h[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\sqrt{-3(x+h)-7} - \sqrt{-3x-7}}h[/tex]
Rationalize the numerator by multiplying the fraction uniformly by its conjugate:
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\sqrt{-3(x+h)-7} - \sqrt{-3x-7}}h \times \dfrac{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\left(\sqrt{-3(x+h)-7}\right)^2 - \left(\sqrt{-3x-7}\right)^2}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{(-3(x+h)-7) - (-3x-7)}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{-3h}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = -3 \lim_{h\to0} \frac1{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}[/tex]
The remaining limand is continuous at h = 0, so we can substitute h = 0 directly and get a limit/derivative of
[tex]\displaystyle t'(x) = -\frac3{\sqrt{-3(x+0)-7} + \sqrt{-3x - 7}} = \boxed{-\frac3{2\sqrt{-3x-7}}}[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.