Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
By definition of the derivative,
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{t(x+h) - t(x)}h[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\sqrt{-3(x+h)-7} - \sqrt{-3x-7}}h[/tex]
Rationalize the numerator by multiplying the fraction uniformly by its conjugate:
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\sqrt{-3(x+h)-7} - \sqrt{-3x-7}}h \times \dfrac{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\left(\sqrt{-3(x+h)-7}\right)^2 - \left(\sqrt{-3x-7}\right)^2}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{(-3(x+h)-7) - (-3x-7)}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{-3h}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = -3 \lim_{h\to0} \frac1{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}[/tex]
The remaining limand is continuous at h = 0, so we can substitute h = 0 directly and get a limit/derivative of
[tex]\displaystyle t'(x) = -\frac3{\sqrt{-3(x+0)-7} + \sqrt{-3x - 7}} = \boxed{-\frac3{2\sqrt{-3x-7}}}[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.