Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
By definition of the derivative,
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{t(x+h) - t(x)}h[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\sqrt{-3(x+h)-7} - \sqrt{-3x-7}}h[/tex]
Rationalize the numerator by multiplying the fraction uniformly by its conjugate:
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\sqrt{-3(x+h)-7} - \sqrt{-3x-7}}h \times \dfrac{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{\left(\sqrt{-3(x+h)-7}\right)^2 - \left(\sqrt{-3x-7}\right)^2}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{(-3(x+h)-7) - (-3x-7)}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = \lim_{h\to0} \frac{-3h}{h \left(\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}\right)}[/tex]
[tex]\displaystyle t'(x) = -3 \lim_{h\to0} \frac1{\sqrt{-3(x+h)-7} + \sqrt{-3x - 7}}[/tex]
The remaining limand is continuous at h = 0, so we can substitute h = 0 directly and get a limit/derivative of
[tex]\displaystyle t'(x) = -\frac3{\sqrt{-3(x+0)-7} + \sqrt{-3x - 7}} = \boxed{-\frac3{2\sqrt{-3x-7}}}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.