Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer: [tex]\frac{-3\sqrt{13}+4\sqrt{3}}{20}[/tex]
This is the single fraction of -3*sqrt(13)+4*sqrt(3) up top all over 20.
sqrt = square root
=======================================================
Explanation:
Angle theta is between pi and 3pi/2. This places the angle in quadrant Q3 where both cosine and sine are negative
Use the pythagorean trig identity to get the following:
[tex]\sin^2 \theta + \cos^2 \theta = 1\\\\\sin^2 \theta + \left(-\frac{\sqrt{3}}{4}\right)^2 = 1\\\\\sin^2 \theta + \frac{3}{16} = 1\\\\\sin^2 \theta = 1 - \frac{3}{16}\\\\\sin^2 \theta = \frac{16}{16} - \frac{3}{16}\\\\\sin^2 \theta = \frac{16-3}{16}\\\\\sin^2 \theta = \frac{13}{16}\\\\\sin \theta = -\sqrt{\frac{13}{16}} \ \text{ ... sine is negative in Q3}\\\\\sin \theta = -\frac{\sqrt{13}}{\sqrt{16}}\\\\\sin \theta = -\frac{\sqrt{13}}{4}\\\\[/tex]
Angle beta is in Q1 where sine and cosine are positive.
Draw a right triangle with legs 3 and 4. The hypotenuse is 5 through the pythagorean theorem. In other words, we have a 3-4-5 right triangle.
Since [tex]\tan \beta = \frac{3}{4}[/tex], this means [tex]\sin \beta = \frac{3}{5} \ \text{ and } \ \cos \beta = \frac{4}{5}[/tex]
Use these ideas:
- sin = opposite/hypotenuse
- cos = adjacent/hypotenuse
- tan = opposite/adjacent
In this case we have: opposite = 3, adjacent = 4, hypotenuse = 5.
-------------------------------------
To recap:
[tex]\cos \theta = -\frac{\sqrt{3}}{4}\\\\\sin \theta = -\frac{\sqrt{13}}{4}\\\\\cos \beta = \frac{3}{5}\\\\\sin \beta = \frac{4}{5}\\\\[/tex]
They lead to this
[tex]\sin\left(\theta + \beta\right) = \sin \theta * \cos \beta - \cos \theta * \sin \beta\\\\\sin\left(\theta + \beta\right) = -\frac{\sqrt{13}}{4} * \frac{3}{5} - \left(-\frac{\sqrt{3}}{4}\right) * \frac{4}{5}\\\\\sin\left(\theta + \beta\right) = -\frac{3\sqrt{13}}{20}+\frac{4\sqrt{3}}{20}\\\\\sin\left(\theta + \beta\right) = \frac{-3\sqrt{13}+4\sqrt{3}}{20}\\\\[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.