Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
tan²Θ
Step-by-step explanation:
simplify the expression using the identities
secΘ = [tex]\frac{1}{cos0}[/tex]
tan²Θ = sec²Θ - 1
then
[tex]\frac{cos0-cos^30}{cos^30}[/tex] ( divide each term on the numerator by cos³Θ
= [tex]\frac{cos0}{cos^30}[/tex] - [tex]\frac{cos^30}{cos^30}[/tex]
= [tex]\frac{1}{cos^20}[/tex] - 1
= sec²Θ - 1
= tan²Θ
Answer:
[tex]\tan^2(\theta)[/tex]
Step-by-step explanation:
Assuming this is
[tex]\dfrac{\cos(\theta)-cos^3(\theta)}{cos^3(\theta)}[/tex]
Trig identities used:
[tex]\sin^2(\theta)+\cos^2(\theta)=1 \implies 1-\cos^2(\theta)=\sin^2(\theta)[/tex]
[tex]\dfrac{\cos(\theta)-cos^3(\theta)}{cos^3(\theta)}[/tex]
[tex]=\dfrac{\cos(\theta)(1-cos^2(\theta))}{cos^3(\theta)}[/tex]
[tex]=\dfrac{1-cos^2(\theta)}{cos^2(\theta)}[/tex]
[tex]=\dfrac{sin^2(\theta)}{cos^2(\theta)}[/tex]
[tex]=\tan^2(\theta)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.