Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
tan²Θ
Step-by-step explanation:
simplify the expression using the identities
secΘ = [tex]\frac{1}{cos0}[/tex]
tan²Θ = sec²Θ - 1
then
[tex]\frac{cos0-cos^30}{cos^30}[/tex] ( divide each term on the numerator by cos³Θ
= [tex]\frac{cos0}{cos^30}[/tex] - [tex]\frac{cos^30}{cos^30}[/tex]
= [tex]\frac{1}{cos^20}[/tex] - 1
= sec²Θ - 1
= tan²Θ
Answer:
[tex]\tan^2(\theta)[/tex]
Step-by-step explanation:
Assuming this is
[tex]\dfrac{\cos(\theta)-cos^3(\theta)}{cos^3(\theta)}[/tex]
Trig identities used:
[tex]\sin^2(\theta)+\cos^2(\theta)=1 \implies 1-\cos^2(\theta)=\sin^2(\theta)[/tex]
[tex]\dfrac{\cos(\theta)-cos^3(\theta)}{cos^3(\theta)}[/tex]
[tex]=\dfrac{\cos(\theta)(1-cos^2(\theta))}{cos^3(\theta)}[/tex]
[tex]=\dfrac{1-cos^2(\theta)}{cos^2(\theta)}[/tex]
[tex]=\dfrac{sin^2(\theta)}{cos^2(\theta)}[/tex]
[tex]=\tan^2(\theta)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.