Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

100 POINTS! FULLY CORRECT AND EXPLANITORY ANSWERS OLNY!



Akari has a punch bowl with a volume of 130,000/3 π cm^3. She is hosting a party where she’ll be offering guests two different sizes of cylindrical cups.




The bowl is completely full when Akari begins serving the punch.



Note: 1 cm^3=1 mL



A. Cup A has a diameter of 10 cm. and a height of 20 cm. Find Volume of Cup A.



B. Determine how many cups the punch bowl will fill using Cup size A.

Round the number of scoops to the nearest whole number, and make certain to show your work.



C. Cup B has a diameter of 20 cm. and a height of 20 cm. Find the volume of B.



D. Determine how many cups of punch the punch bowl will fill using Cup size B. Round the number of scoops to the nearest whole number, and make certain to show your work.



THIS QUESTION HAS 4 PARTS (A,B,C, and D) REMEMBER TO ANSWER THEM ALL! Thank you!


Sagot :

Answer:

volume of a cylinder = [tex]\pi r^2h[/tex] (where r is the radius and h is the height)

diameter = [tex]2r[/tex]  (where r is the radius)

A)  volume of Cup A = [tex]\pi \times 5^2\times20=500\pi \textsf{ cm}^3[/tex]

B) Assuming the volume of the punch bowl is [tex]\dfrac{130000}{3}\pi \textsf{ cm}^3[/tex]

[tex]\implies \dfrac{130000}{3}\pi \div 500\pi=\dfrac{260}{3}=87 \textsf{ (nearest whole number)}[/tex]

C)  volume of Cup B = [tex]\pi \times 10^2\times20=2000\pi\textsf{ cm}^3[/tex]

D)  Assuming the volume of the punch bowl is [tex]\dfrac{130000}{3}\pi \textsf{ cm}^3[/tex]

[tex]\implies \dfrac{130000}{3}\pi \div 2000\pi=\dfrac{65}{3}=22 \textsf{ (nearest whole number)}[/tex]

#1

Diameter=10cm

  • Radius=r=5cm
  • Height=20cm=h

[tex]\\ \rm\Rrightarrow V=\pi r^2h[/tex]

[tex]\\ \rm\Rrightarrow V=\pi 25(20)[/tex]

[tex]\\ \rm\Rrightarrow V=500\pi cm^3[/tex]

#2

Total cups:-

  • 130000/3π÷500π =87cups

#3

  • Radius=r=10cm
  • Height=20cm

[tex]\\ \rm\Rrightarrow V=\pi 100(20)[/tex]

[tex]\\ \rm\Rrightarrow V=2000\pi cm^3[/tex]

#4

Total cups

  • 130000/3 π÷2000π=22cups