Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The system of inequalities that model the number and types green (g)
and blue (b) beads in a belt are as follows;
- 70 < g + b < 74
- 10 < g < 14
- 56 < b < 63
- [tex]\underline{\dfrac{1}{4} \leq \dfrac{b}{g} \leq \dfrac{1}{6}}[/tex]
How can s system of inequalities be written?
The waist size for the belt = ±28 inches
The x represent the number of beads on each belt, we have;
Number of beads per belt 70 < x < 74
Minimum ratio of blue to green beads = 1 : 4
Maximum ratio of blue to green beads = 1 : 6
Therefore;
Minimum number of blue beads = [tex]\frac{70}{1 + 6}[/tex] = 10
Maximum number of blue beads = [tex]\frac{74}{1 + 4}[/tex] ≈ 14
The number of blue beads, b, in a belt is therefore;
- 10 < g < 14
Minimum number of green beads = [tex]\frac{4}{1 + 4}[/tex] × 70 = 56
Maximum number of green beads = [tex]\frac{6}{1 + 6}[/tex] × 74 ≈ 63
The number of green beads, g, in a belt is therefore;
- 56 < b < 63
The sum of the beads on each belt = g + b = x
Therefore;
- 70 < g + b < 74
From the given maximum and minimum ratios, we have;
- [tex]\underline{\dfrac{1}{4} \leq \dfrac{b}{g} \leq \dfrac{1}{6}}[/tex]
Learn more about inequalities here:
https://brainly.com/question/371134
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.