Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The system of inequalities that model the number and types green (g)
and blue (b) beads in a belt are as follows;
- 70 < g + b < 74
- 10 < g < 14
- 56 < b < 63
- [tex]\underline{\dfrac{1}{4} \leq \dfrac{b}{g} \leq \dfrac{1}{6}}[/tex]
How can s system of inequalities be written?
The waist size for the belt = ±28 inches
The x represent the number of beads on each belt, we have;
Number of beads per belt 70 < x < 74
Minimum ratio of blue to green beads = 1 : 4
Maximum ratio of blue to green beads = 1 : 6
Therefore;
Minimum number of blue beads = [tex]\frac{70}{1 + 6}[/tex] = 10
Maximum number of blue beads = [tex]\frac{74}{1 + 4}[/tex] ≈ 14
The number of blue beads, b, in a belt is therefore;
- 10 < g < 14
Minimum number of green beads = [tex]\frac{4}{1 + 4}[/tex] × 70 = 56
Maximum number of green beads = [tex]\frac{6}{1 + 6}[/tex] × 74 ≈ 63
The number of green beads, g, in a belt is therefore;
- 56 < b < 63
The sum of the beads on each belt = g + b = x
Therefore;
- 70 < g + b < 74
From the given maximum and minimum ratios, we have;
- [tex]\underline{\dfrac{1}{4} \leq \dfrac{b}{g} \leq \dfrac{1}{6}}[/tex]
Learn more about inequalities here:
https://brainly.com/question/371134
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.