Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The triangles LMN and LPQ are illustrations of similar triangles
The length of line segment PM is 5.5 cm
How to determine the length of line segment PM?
The given parameters are:
LP = 2 cm
LQ = 3 cm
QN = 2 cm
m ∠LPQ = m ∠LNM
m ∠LQP = ∠LMN
The above parameters mean that, triangles LMN and LPQ are similar by the AA similarity theorem.
So, we have the following equivalent ratio
[tex]LP : LQ = LN : LM[/tex]
The ratio becomes
[tex]2 :3 = 5 : LM[/tex]
The segment LM is the sum of LP and PM.
So, we have:
[tex]2 :3 = 5 : LP + PM[/tex]
Express as fraction
[tex]\frac{2}{3} = \frac{5}{ LP + PM}[/tex]
Substitute 2 for LP
[tex]\frac{2}{3} = \frac{5}{2 + PM}[/tex]
Cross multiply
[tex]4 + 2PM = 15[/tex]
Subtract 4 from both sides
[tex]2PM = 11[/tex]
Divide both sides by 2
[tex]PM = 5.5[/tex]
Hence, the length of line segment PM is 5.5 cm
Read more about similar triangles at:
https://brainly.com/question/14285697

Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.