Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The inequality describes the possible values of the variable x as being
larger than [tex]1\frac{8}{9}[/tex]
Part 1:
[tex]x \geq \underline{1\frac{8}{9}}[/tex]
Part 2: x is the set of all real numbers greater than [tex]\underline{1\frac{8}{9}}[/tex]
Part 3: The solution set includes 2, and 3
By testing, we have;
When x = 2; -3×(2 - 2) = 0 ≤ 1/3;
When x = 3; -3 × (3 - 2) = -3 ≤ 1/3
How to find the solution and test the inequality?
The given inequality is -3·(x - 2) ≤ 1/3
Part 1:
The solution of the inequality can be found by making x the subject of the inequality as follows;
-3·(x - 2) ≤ 1/3
[tex](x - 2) \geq \dfrac{1}{3 \times (-3)} = -\dfrac{1}{9}[/tex]
- [tex]x \geq -\dfrac{1}{9} + 2 = \dfrac{17}{9} = 1\frac{8}{9}[/tex]
[tex]x \geq \underline{1\frac{8}{9}}[/tex]
Part 2: The verbal statement describing the solution of the inequality is as follows;
- The solution of the inequality is that the value of x is the set of all real numbers greater than [tex]\underline{1\frac{8}{9}}[/tex]
Part 3: The elements of the solution set which are numbers greater than [tex]1\frac{8}{9}[/tex] include 2, and 3
By testing, we have;
When x = 2; -3×(2 - 2) = 0 ≤ 1/3;
When x = 3, we have;
-3 × (3 - 2) = -3 ≤ 1/3
Learn more about inequalities here:
https://brainly.com/question/5183393
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.