Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
I think you meant
[tex]\displaystyle \frac{d}{dx} \int_0^{f(x)} \frac{dt}{1+e^t}[/tex]
where
[tex]f(x) = \displaystyle \int_0^{\sin^{-1}(x)} \sec(t) \, dt[/tex]
By the fundamental theorem of calculus, we have
[tex]\displaystyle \frac{d}{dx} \int_0^{f(x)} \frac{dt}{1+e^t} = \frac{\frac{df}{dx}}{1+e^{f(x)}}[/tex]
as well as
[tex]\dfrac{df}{dx} = \sec\left(\sin^{-1}(x)\right) \times \dfrac{d\sin^{-1}(x)}{dx}[/tex]
The derivative of arcsine is
[tex]\dfrac{d\sin^{-1}(x)}{dx} = \dfrac1{\sqrt{1-x^2}}[/tex]
and so the overall derivative we want is
[tex]\displaystyle \frac{d}{dx} \int_0^{f(x)} \frac{dt}{1+e^t} = \frac{\sec\left(\sin^{-1}(x)\right)}{\left(1+e^{f(x)}\right)\sqrt{1-x^2}}[/tex]
We can further simplify [tex]e^{f(x)}[/tex], as
[tex]\displaystyle \int \sec(t) \, dt = \ln|\sec(t) + \tan(t)| + C[/tex]
[tex]\implies \displaystyle \int_0^{\sin^{-1}(x)} \sec(t) \, dt = \ln\left|\sec\left(\sin^{-1}(x)\right) + \tan\left(\sin^{-1}(x)\right)\right| = \ln\left|\frac{1+x}{\sqrt{1-x^2}}\right|[/tex]
[tex]\implies e^{f(x)} = \dfrac{1+x}{\sqrt{1-x^2}}[/tex]
Then the fully simplified derivative would be
[tex]\displaystyle \frac{d}{dx} \int_0^{f(x)} \frac{dt}{1+e^t} = \frac{\sec\left(\sin^{-1}(x)\right)}{\left(1+\dfrac{1+x}{\sqrt{1-x^2}}\right)\sqrt{1-x^2}} = \boxed{\frac{\sec\left(\sin^{-1}(x)\right)}{\sqrt{1-x^2}+1+x}}[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.