Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

[tex] \rm For \: a \in\R |a| > 1, let \\ \rm \lim_{n \to \infty } \left \lgroup \rm\frac{1 + \sqrt[3]{2} + \dots + \sqrt[3]{n} }{ {n}^{ \frac{7}{3} } \left( \frac{1}{(an + 1 {)}^{2} } + \frac{1}{(an + 2 {)}^{2} } + \dots \frac{1}{(an + n{)}^{2} } \right) } \right\rgroup = 54 \\ \rm then \: the \: possible \: value \: of \: a \: is[/tex]​

Sagot :

A possible starting point:

Split up the limit as

[tex]\displaystyle \lim_{n\to\infty} \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^{4/3}} \times \lim_{n\to\infty} \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} = 54[/tex]

Consider the first limit,

[tex]\displaystyle \lim_{n\to\infty} \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^{4/3}}[/tex]

Refer to the Stolz-Cesàro theorem, which says

[tex]\displaystyle \lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}[/tex]

where [tex]a_n[/tex] and [tex]b_n[/tex] are two real sequences, with [tex]b_n[/tex] monotone and divergent. In this case,

[tex]a_n = 1+\sqrt[3]{2}+\sqrt[3]{3}+\cdots+\sqrt[3]{n}[/tex]

[tex]b_n = n^{4/3}[/tex]

Applying S-C, we get

[tex]\displaystyle \lim_{n\to\infty} \frac{\sqrt[3]{n+1}}{(n+1)^{4/3} - n^{4/3}} = \lim_{n\to\infty} \frac{(n+1)^{1/3}}{(n+1)^{4/3} - n^{4/3}}[/tex]

Recalling the difference of cubes identity,

[tex]a^3 - b^3 = (a - b) (a^2 + ab + b^2)[/tex]

we can rewrite the limit as

[tex]\displaystyle \lim_{n\to\infty} \frac{(n+1)^3 + (n+1)^{5/3} n^{4/3} + (n+1)^{1/3} n^{8/3}}{(n+1)^4 - n^4}[/tex]

and dividing uniformly through the limand by (n + 1)³ yields

[tex]\displaystyle \lim_{n\to\infty} \frac{1 + \left(\frac n{n+1}\right)^{4/3} + \left(\frac n{n+1}\right)^{8/3}}{(n+1) - \frac{n^4}{(n+1)^3}}[/tex]

Now,

[tex]n^4 = (n+1)^4 - 4n^3 - 6n^2 - 4n - 1[/tex]

[tex]\implies \dfrac{n^4}{(n+1)^3} = (n+1) - \dfrac{4n^3+6n^2+4n+1}{(n+1)^3}[/tex]

so the denominator in the limit reduces to a degree-1 polynomial with leading coefficient +4. The numerator converges to 1 + 1 + 1 = 3, so this first limit evaluates to

[tex]\displaystyle \lim_{n\to\infty} \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^{4/3}} = \frac34[/tex]

It remains to determine the value of a such that

[tex]\displaystyle \lim_{n\to\infty} \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} = \frac43\times54 = 72[/tex]

We have a natural choice of lower and upper bounds for the sum in the denominator:

[tex]\displaystyle \frac1{(an+n)^2} + \cdots + \frac1{(an+n)^2} \\\\ ~ ~ ~ ~ \le \frac1{(an+1)^2} + \cdots + \frac1{(an+n)^2} \\\\ ~ ~ ~ ~ ~ ~ ~ ~ \le \frac1{(an+1)^2} + \cdots + \frac1{(an+1)^2}[/tex]

[tex]\implies \displaystyle \frac{n}{(an+n)^2} \le \frac1{(an+1)^2} + \cdots + \frac1{(an+n)^2} \le \frac{n}{(an+1)^2}[/tex]

and

[tex]\displaystyle \lim_{n\to\infty} n\times\frac{n}{(an+n)^2} = \frac1{(a+1)^2}[/tex]

[tex]\displaystyle \lim_{n\to\infty} n\times\frac{n}{(an+1)^2} = \frac1{a^2}[/tex]

so that by the squeeze/sandwich theorem,

[tex]\displaystyle \frac1{(a+1)^2} \le \lim_{n\to\infty} n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right) \le \frac1{a^2}[/tex]

[tex]\implies \displaystyle a^2 \le \lim_{n\to\infty} \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} \le (a+1)^2[/tex]

and if the middle limit is supposed to evaluate to 72, solving the inequality for a puts it in the interval [6√2 - 1, 6√2] ≈ [7.48528, 8.48528].

Checking against a computer, the solution appears to be a = 8, which agrees with the analysis above. Just not sure how to bridge the gap yet...

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.