Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
A possible starting point:
Split up the limit as
[tex]\displaystyle \lim_{n\to\infty} \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^{4/3}} \times \lim_{n\to\infty} \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} = 54[/tex]
Consider the first limit,
[tex]\displaystyle \lim_{n\to\infty} \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^{4/3}}[/tex]
Refer to the Stolz-Cesàro theorem, which says
[tex]\displaystyle \lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}[/tex]
where [tex]a_n[/tex] and [tex]b_n[/tex] are two real sequences, with [tex]b_n[/tex] monotone and divergent. In this case,
[tex]a_n = 1+\sqrt[3]{2}+\sqrt[3]{3}+\cdots+\sqrt[3]{n}[/tex]
[tex]b_n = n^{4/3}[/tex]
Applying S-C, we get
[tex]\displaystyle \lim_{n\to\infty} \frac{\sqrt[3]{n+1}}{(n+1)^{4/3} - n^{4/3}} = \lim_{n\to\infty} \frac{(n+1)^{1/3}}{(n+1)^{4/3} - n^{4/3}}[/tex]
Recalling the difference of cubes identity,
[tex]a^3 - b^3 = (a - b) (a^2 + ab + b^2)[/tex]
we can rewrite the limit as
[tex]\displaystyle \lim_{n\to\infty} \frac{(n+1)^3 + (n+1)^{5/3} n^{4/3} + (n+1)^{1/3} n^{8/3}}{(n+1)^4 - n^4}[/tex]
and dividing uniformly through the limand by (n + 1)³ yields
[tex]\displaystyle \lim_{n\to\infty} \frac{1 + \left(\frac n{n+1}\right)^{4/3} + \left(\frac n{n+1}\right)^{8/3}}{(n+1) - \frac{n^4}{(n+1)^3}}[/tex]
Now,
[tex]n^4 = (n+1)^4 - 4n^3 - 6n^2 - 4n - 1[/tex]
[tex]\implies \dfrac{n^4}{(n+1)^3} = (n+1) - \dfrac{4n^3+6n^2+4n+1}{(n+1)^3}[/tex]
so the denominator in the limit reduces to a degree-1 polynomial with leading coefficient +4. The numerator converges to 1 + 1 + 1 = 3, so this first limit evaluates to
[tex]\displaystyle \lim_{n\to\infty} \frac{1 + \sqrt[3]{2} + \cdots + \sqrt[3]{n}}{n^{4/3}} = \frac34[/tex]
It remains to determine the value of a such that
[tex]\displaystyle \lim_{n\to\infty} \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} = \frac43\times54 = 72[/tex]
We have a natural choice of lower and upper bounds for the sum in the denominator:
[tex]\displaystyle \frac1{(an+n)^2} + \cdots + \frac1{(an+n)^2} \\\\ ~ ~ ~ ~ \le \frac1{(an+1)^2} + \cdots + \frac1{(an+n)^2} \\\\ ~ ~ ~ ~ ~ ~ ~ ~ \le \frac1{(an+1)^2} + \cdots + \frac1{(an+1)^2}[/tex]
[tex]\implies \displaystyle \frac{n}{(an+n)^2} \le \frac1{(an+1)^2} + \cdots + \frac1{(an+n)^2} \le \frac{n}{(an+1)^2}[/tex]
and
[tex]\displaystyle \lim_{n\to\infty} n\times\frac{n}{(an+n)^2} = \frac1{(a+1)^2}[/tex]
[tex]\displaystyle \lim_{n\to\infty} n\times\frac{n}{(an+1)^2} = \frac1{a^2}[/tex]
so that by the squeeze/sandwich theorem,
[tex]\displaystyle \frac1{(a+1)^2} \le \lim_{n\to\infty} n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right) \le \frac1{a^2}[/tex]
[tex]\implies \displaystyle a^2 \le \lim_{n\to\infty} \frac1{n \left(\frac1{(an+1)^2} + \frac1{(an+2)^2} + \cdots + \frac1{(an+n)^2}\right)} \le (a+1)^2[/tex]
and if the middle limit is supposed to evaluate to 72, solving the inequality for a puts it in the interval [6√2 - 1, 6√2] ≈ [7.48528, 8.48528].
Checking against a computer, the solution appears to be a = 8, which agrees with the analysis above. Just not sure how to bridge the gap yet...
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.