Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The summation of the considered expression in terms of n from n = 1 to 14 is given by: Option D: 343
How to find the sum of consecutive integers?
[tex]1 + 2 + 3 + ... + n = \dfrac{n(n+1)}{2}[/tex]
What are the properties of summation?
[tex]\sum_{i=r}^s (a \times f(i) + b) = a \times [\: \sum_{i=r}^s f(i)] + (s-r)b[/tex]
where a, b, r, and s are constants, f(i) is function of i, i ranging from r to s (integral assuming).
For the given case, the considered summation can be written symbolically as:
[tex]\sum_{n=1}^{14} (3n + 2)[/tex]
It is evaluated as;
[tex]\sum_{n=1}^{14} (3n + 2) = 3 \times [ \: \sum_{n=1}^{14} n ] + \sum_{n=1}^{14} 2\\\\\sum_{n=1}^{14} (3n + 2) = 3 \times \dfrac{(14)(14 + 1)}{2} + (2 + 2 + .. + 2(\text{14 times}))\\\\\sum_{n=1}^{14} (3n + 2) = 3 \times 105 + 28 = 343\\[/tex]
Thus, the summation of the considered expression in terms of n from n = 1 to 14 is given by: Option D: 343
Learn more about summation here:
https://brainly.com/question/14322177
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.