Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The summation of the considered expression in terms of n from n = 1 to 14 is given by: Option D: 343
How to find the sum of consecutive integers?
[tex]1 + 2 + 3 + ... + n = \dfrac{n(n+1)}{2}[/tex]
What are the properties of summation?
[tex]\sum_{i=r}^s (a \times f(i) + b) = a \times [\: \sum_{i=r}^s f(i)] + (s-r)b[/tex]
where a, b, r, and s are constants, f(i) is function of i, i ranging from r to s (integral assuming).
For the given case, the considered summation can be written symbolically as:
[tex]\sum_{n=1}^{14} (3n + 2)[/tex]
It is evaluated as;
[tex]\sum_{n=1}^{14} (3n + 2) = 3 \times [ \: \sum_{n=1}^{14} n ] + \sum_{n=1}^{14} 2\\\\\sum_{n=1}^{14} (3n + 2) = 3 \times \dfrac{(14)(14 + 1)}{2} + (2 + 2 + .. + 2(\text{14 times}))\\\\\sum_{n=1}^{14} (3n + 2) = 3 \times 105 + 28 = 343\\[/tex]
Thus, the summation of the considered expression in terms of n from n = 1 to 14 is given by: Option D: 343
Learn more about summation here:
https://brainly.com/question/14322177
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.