Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

50 POINTS AND BRAINLIESTIF I CAN thank you
Discussion Topic
For any right triangle, the side lengths of the triangle can be put in the equation a2 + b2 = c2 where a, b, and c are the side lengths. A triangle with the side lengths 3 inches, 4 inches, and 5 inches is a right triangle. Which way(s) can you substitute the values into the equation to make it true? Which variable has to match the longest side length? Why?


Sagot :

Answer/Step-by-step explanation:

Let's use Pythagorean theorem:

Formula : a² + b² = c²

Note that:

a is the long leg of the triangle

b is the short leg of the triangle

c is the hypotenuse

Side lengths Given are; 3 inches, 4 inches, 5 inches of a right triangle.

Hence,

a = 4 inches

b = 3 inches

c = 5 inches

Thus,

4² + 3² = 5²

16 + 9 = 25

25 = 25  [True]

[RevyBreeze]

Let's see

  • a=3
  • b=4
  • c=5

Put values

[tex]\\ \rm\hookrightarrow c^2=a^2+b^2[/tex]

[tex]\\ \rm\hookrightarrow 5^2=4^2+3^2[/tex]

[tex]\\ \rm\hookrightarrow 25=16+9[/tex]

[tex]\\ \rm\hookrightarrow 25=25[/tex]

Verified