Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Two way table is description of two dimensions' data and their intersections' data. The correct two-way table for the given data is:
How to form two-way table?
Suppose two dimensions are there, viz X and Y. Some values of X are there as [tex]X_1, X_2, ... , X_n[/tex] and some values of Y are there as [tex]Y_1, Y_2, ..., Y_k[/tex]. List them in title of the rows and left to the columns. There will be [tex]n \times k[/tex] table of values will be formed(excluding titles and totals), such that:
Value(ith row, jth column) = Frequency for intersection of [tex]X_i[/tex] and [tex]Y_j[/tex] (assuming X values are going in rows, and Y values are listed in columns).
Then totals for rows, columns, and whole table are written on bottom and right margin of the final table.
For n = 2, and k = 2, the table would look like:
[tex]\begin{array}{cccc}&Y_1&Y_2&\rm Total\\X_1&n(X_1 \cap Y_1)&n(X_1\cap Y_2)&n(X_1)\\X_2&n(X_2 \cap Y_1)&n(X_2 \cap Y_2)&n(X_2)\\\rm Total & n(Y_1) & n(Y_2) & S \end{array}[/tex]
where S denotes total of totals, also called total frequency.
n is showing the frequency of the bracketed quantity, and intersection sign in between is showing occurrence of both the categories together.
For the given case, let we suppose:
X = Ownership for skateboards
- [tex]X_1[/tex] = Student owns a skateboard
- [tex]X_2[/tex] = Student not owning skateboard
Y = Ownership for snowboards
- [tex]Y_1[/tex] = Student owns a skateboard
- [tex]Y_2[/tex] = Student not owning skateboard
Their frequencies are given in the problem as:
35 of the 99 students who own a skateboard have snowboarded.
That means  [tex]n(X_1 \cap Y_1) = 33[/tex], and [tex]n(X_1)[/tex] = 99 (total frequency(number of students) is 99)
There were 13 students who have snowboarded but do not own a skateboard, so [tex]n(X_2 \cap Y_1) = 13[/tex]
147 students who have never gone snowboarding and do not own a skateboard. Â Thus, [tex]n(X_2 \cap Y_2) = 147[/tex]
We get the table as:
[tex]\begin{array}{cccc}&Y_1&Y_2&\rm Total\\X_1&35&n(X_1\cap Y_2)&99\\X_2&13&147&n(X_2)=13 + 147=160\\\rm Total & n(Y_1)=35+13=48 & n(Y_2) & S=160+99=259 \end{array}[/tex]
Thus, we get number of students who doesn't own snowboard but own skateboard = 99 - 35 = 64
and total students not owning either snowboard or skateboard = 35 + 147 = 182
Thus, the completed table would look like:
[tex]\begin{array}{cccc}&Y_1&Y_2&\rm Total\\X_1&35&64&99\\X_2&13&147&160\\\rm Total & 48 & 211 & 259 \end{array}[/tex]
Learn more about two way frequency table here:
https://brainly.com/question/10563783
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.