Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]\sf y = \bold -\frac{2}{5} x -3[/tex]
Explanation:
part A identification for slope:
[tex]\sf 2x + 5y = 15[/tex]
[tex]\sf 5y = -2x + 15[/tex]
[tex]\sf y = \frac{-2x + 15}{5}[/tex]
[tex]\sf y = -\frac{2 }{5} x+3[/tex]
comparing with slope intercept form: y = mx + b
we can find that here the slope is [tex]\bold -\frac{2}{5}[/tex]
part B, solving the equation:
if the line is parallel, then the slope will be same.
given coordinates: ( - 10, 1 )
using the equation:
y - y₁ = m( x - x₁ )
[tex]\sf y - 1 = \bold -\frac{2}{5} (x --10)[/tex]
[tex]\sf y = \bold -\frac{2}{5} x -4 + 1[/tex]
[tex]\sf y = \bold -\frac{2}{5} x -3[/tex]
Extra information:
check the image below. this proves that the line is parallel and passes through point (-10, 1). the blue line is question line and red the answer line.
Solution:
Step-1: Convert the line into slope intercept form.
- 2x + 5y = 15
- => 5y = -2x + 15
- => y = -0.4x + 3
Step-2: Use the point slope form formula.
- y - y₁ = m(x - x₁)
- => y - 1 = -0.4{x - (-10)}
- => y - 1 = -0.4{x + 10}
- => y - 1 = -0.4x - 4
- => y = -0.4x - 3
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.