Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Prism is a polyhedron that has two parallel polygonal faces. The area of the base can be written as (x-2)(2x+9).
What is the prism?
A prism is a polyhedron that has two polygonal faces lying in parallel planes while the other faces are parallelograms.
As it is given that the volume of the prism is 2x³ + 9x² -8x -36 while its height is x+2, therefore, in order to calculate the area of the base we need to divide the polynomial with the height of the prism.
As we need to divide the polynomial 2x³ + 9x² -8x -36 with x+2, therefore, Using the synthetic division the polynomial is divided as shown below.
The polynomial can be factorized as,
[tex]2x^3+9x^2-8x-36\\\\x^2(2x+9)-4(2x+9)\\\\(x^2-4)(2x+9)\\\\(x+2)(x-2)(2x+9)[/tex]
Thus, the division of the polynomial can be written as,
[tex]\dfrac{2x^3+9x^2-8x-36}{x+2} = \dfrac{(x+2)(x-2)(2x+9)}{(x+2)}=(x-2)(2x+9)[/tex]
Hence, the area of the base can be written as (x-2)(2x+9).
Learn more about Prism:
https://brainly.com/question/318504
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.