Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
According to the probabilities given, it is found that the correct option regarding the independence of the events is given by:
No, P(carry cash) != P(carry cash|have children).
What is the probability of independent events?
If two events, A and B, are independent, we have that:
[tex]P(A \cap B) = P(A)P(B)[/tex]
Which also means that:
[tex]P(A|B) = P(A)[/tex]
[tex]P(B|A) = P(B)[/tex]
In this problem, we have that:
- 62% carry cash on a regular basis, hence P(cash) = 0.62.
- 46% has children, hence P(children) = 0.46.
- Of the 46% who have children, 85% carry cash on a regular basis, hence P(cash|children) = 0.85.
Since P(carry cash) != P(carry cash|have children), they are not independent.
More can be learned about the probability of independent events at https://brainly.com/question/25715148
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.