Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Determine area of the region bounded by y-sinx, y=cosx, and x=pi/2.

Sagot :

Check the picture below.

so we're looking for the area enclosed like so in the picture, now, where sin(x) and cos(x) meet or intersect at least on the 1st Quadrant will be at π/4 where both are 1/√2, so we're really looking for

[tex]\displaystyle\int_{\frac{\pi }{4}}^{\frac{\pi }{2}}~~[sin(x)~~ - ~~cos(x)]dx\implies \int_{\frac{\pi }{4}}^{\frac{\pi }{2}}sin(x)dx~~ - ~~\int_{\frac{\pi }{4}}^{\frac{\pi }{2}}cos(x)dx \\\\\\ \left. \cfrac{}{}-cos(x) \right]_{\frac{\pi }{4}}^{\frac{\pi }{2}}~~ - ~~\left. \cfrac{}{}sin(x) \right]_{\frac{\pi }{4}}^{\frac{\pi }{2}}\implies [0]~~ - ~~\left[-\cfrac{1}{\sqrt{2}} \right]~~ + ~~[-1]~~ - ~~\left[ -\cfrac{1}{\sqrt{2}} \right][/tex]

[tex]\cfrac{1}{\sqrt{2}}-1+\cfrac{1}{\sqrt{2}}\implies \cfrac{2}{\sqrt{2}}-1\implies \sqrt{2}-1[/tex]

View image jdoe0001
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.