Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The increment in [tex]f[/tex] is approximately [tex]-3.883\times 10^{-3}[/tex].
How to estimate an increment in [tex]f(x)[/tex] by linear approximation
The linear approximation is derived from definition of tangent, that is to say:
[tex]\Delta f \approx m_{x}\cdot \Delta x[/tex] (1)
Where:
- [tex]m_{x}[/tex] - Slope of the function evaluated at [tex]x[/tex].
- [tex]\Delta x[/tex] - Increment in [tex]x[/tex].
- [tex]\Delta f[/tex] - Increment in [tex]f[/tex].
The slope is found by derivatives:
[tex]m_{x} = \frac{\pi}{5} \cdot \cos \frac{\pi\cdot x}{5}[/tex] (2)
If we know that [tex]x = 3[/tex] and [tex]\Delta x = 0.02[/tex], then the increment in [tex]f[/tex] is:
[tex]\Delta f \approx \left(\frac{\pi}{5}\cdot \cos \frac{3\pi}{5} \right)\cdot (0.02)[/tex]
[tex]\Delta f \approx -3.883\times 10^{-3}[/tex]
The increment in [tex]f[/tex] is approximately [tex]-3.883\times 10^{-3}[/tex]. [tex]\blacksquare[/tex]
To learn more on linear approximations, we kindly invite to check this verified question: https://brainly.com/question/19468438
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.