Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The increment in [tex]f[/tex] is approximately [tex]-3.883\times 10^{-3}[/tex].
How to estimate an increment in [tex]f(x)[/tex] by linear approximation
The linear approximation is derived from definition of tangent, that is to say:
[tex]\Delta f \approx m_{x}\cdot \Delta x[/tex] (1)
Where:
- [tex]m_{x}[/tex] - Slope of the function evaluated at [tex]x[/tex].
- [tex]\Delta x[/tex] - Increment in [tex]x[/tex].
- [tex]\Delta f[/tex] - Increment in [tex]f[/tex].
The slope is found by derivatives:
[tex]m_{x} = \frac{\pi}{5} \cdot \cos \frac{\pi\cdot x}{5}[/tex] (2)
If we know that [tex]x = 3[/tex] and [tex]\Delta x = 0.02[/tex], then the increment in [tex]f[/tex] is:
[tex]\Delta f \approx \left(\frac{\pi}{5}\cdot \cos \frac{3\pi}{5} \right)\cdot (0.02)[/tex]
[tex]\Delta f \approx -3.883\times 10^{-3}[/tex]
The increment in [tex]f[/tex] is approximately [tex]-3.883\times 10^{-3}[/tex]. [tex]\blacksquare[/tex]
To learn more on linear approximations, we kindly invite to check this verified question: https://brainly.com/question/19468438
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.