Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Finding the area of a triangle is straightforward if you know the length of the base and the height of the triangle. But is it possible to find the area of a triangle if you know only the coordinates of its vertices? In this task, you’ll find out. Consider ΔABC, whose vertices are A(2, 1), B(3, 3), and C(1, 6); let line segment AC represent the base of the triangle.
Part A
Find the equation of the line passing through B and perpendicular to .


Sagot :

Answer:

y = x/5 + 12/5

Step-by-step explanation:

Slope of AC is (6 - 1)/(1 - 2) = -5

slope of the line perpendicular to AC is -1//(-5) = 1/5

the equation of the line perpendicular to AC is y = x/5 + b

the equation of the line passing through B, so 3 = 3/5 + b, b = 12/5

the equation of the line passing through B and perpendicular to AC is y = x/5 + 12/5

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.