Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The recursive geometric sequence that models this situation is:
[tex]f(n) = 0.9f(n-1)[/tex]
[tex]f(1) = 90000[/tex]
What is a geometric sequence?
A geometric sequence is a sequence in which the result of the division of consecutive terms is always the same, called common ratio q.
It can be represented by a recursive sequence as follows:
[tex]f(n) = qf(n-1)[/tex]
With f(1) as the first term.
In this problem, the sequence is: 90.000: 81,000; 72,900; 65,610, hence:
[tex]q = \frac{65610}{72900} = \cdots = \frac{81000}{90000} = 0.9[/tex]
[tex]f(1) = 90000[/tex]
Hence:
[tex]f(n) = 0.9f(n-1)[/tex]
[tex]f(1) = 90000[/tex]
More can be learned about geometric sequences at https://brainly.com/question/11847927
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.