At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
As we know, the standard form of circle is written in this way ~
[tex] \qquad \sf x{}^{2} + y {}^{2} + 2gx + 2fy + c = 0[/tex]
where, the coordinates of centre is (-g , -f) and radius equals to :
[tex]\qquad \sf \dashrightarrow \: \sqrt{g {}^{2} + {f}^{2} - c } [/tex]
Now, it's time to equate the coordinates of centre ~
- [tex] \qquad \sf( - g, - f) \: \: and \: \: (0,4)[/tex]
Here we get,
[tex]\qquad \sf \dashrightarrow \: - g = 0[/tex]
[tex]\qquad \sf \dashrightarrow \: g = 0[/tex]
and
[tex]\qquad \sf \dashrightarrow \: - f = 4[/tex]
[tex]\qquad \sf \dashrightarrow \: f = - 4[/tex]
Now, let's find the the Radius using distance formula on the given points, one of them is centre and other is point lying on circle, so distance between them is the radius.
[tex]\qquad \sf \dashrightarrow \: r = \sqrt{( 0 - ( - 2)) {}^{2} + (4 - ( - 4)) {}^{2} }[/tex]
[tex]\qquad \sf \dashrightarrow \: r = \sqrt{ (0 + 2) {}^{2} + (4 + 4) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: r = \sqrt{ (2) {}^{2} + (8) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: r = \sqrt{ 4+ 64 } [/tex]
[tex]\qquad \sf \dashrightarrow \: r = \sqrt{ 68 } [/tex]
[tex]\qquad \sf \dashrightarrow \: r = 2\sqrt{ 17 } [/tex]
Now, use the the following equation to find c of the standard equation
[tex]\qquad \sf \dashrightarrow \: r = \sqrt{g {}^{2} + {f}^{2} - c} [/tex]
[tex]\qquad \sf \dashrightarrow \: 2 \sqrt{17} = \sqrt{ {0}^{2} + {4}^{2} - c}[/tex]
squaring both sides :
[tex]\qquad \sf \dashrightarrow \: 68 = {0}^{2} + {4}^{2} - c[/tex]
[tex]\qquad \sf \dashrightarrow \: 68 = 8 - c[/tex]
[tex]\qquad \sf \dashrightarrow \: - c = 68 - 8[/tex]
[tex]\qquad \sf \dashrightarrow \: c = - 60[/tex]
Therefore, we got the standard equation of circle as ~
[tex]\qquad \sf \dashrightarrow \: {x}^{2} + {y}^{2} + 2(0)x + 2( - 4)y + ( - 60) = 0[/tex]
[tex]\qquad \sf \dashrightarrow \: {x}^{2} + {y}^{2} - 8y - 60 = 0[/tex]
I Hope it helps ~
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.