At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Rewrite the sums as
[tex]\displaystyle S_2 = \sum_{k=1}^n \frac{k^2}{2k^2 - 2nk + n^2} = \sum_{k=1}^n \frac{\frac{k^2}{n^2}}{\frac{2k^2}{n^2} - \frac{2k}n + 1}[/tex]
and
[tex]\displaystyle S_3 = \sum_{k=1}^n \frac{k^2}{3k^2 - 3nk + n^2} = \sum_{k=1}^n \frac{\frac{k^2}{n^2}}{\frac{3k^2}{n^2} - \frac{3k}n + 1}[/tex]
Now notice that
[tex]\displaystyle \lim_{n\to\infty} \frac{S_2}n = \int_0^1 \frac{x^2}{2x^2 - 2x + 1} = \frac12[/tex]
and
[tex]\displaystyle \lim_{n\to\infty} \frac{S_3}n = \int_0^1 \frac{x^2}{3x^2 - 3x + 1} = \frac{9 + 2\pi\sqrt3}{27}[/tex]
and the important point here is that [tex]\frac{S_2}n[/tex] and [tex]\frac{S_3}n[/tex] converge to constants. For any real constant a, we have
[tex]\displaystyle \lim_{n\to\infty} \frac{\ln(an)}n = 0[/tex]
Rewrite the limit as
[tex]\displaystyle \lim_{n\to\infty} \sqrt[n]{S_2 \times S_3} = \lim_{n\to\infty} \exp\left(\ln\left(\sqrt[n]{S_2 \times S_3}\right)\right) \\\\ = \exp\left(\lim_{n\to\infty} \frac{\ln(S_2) + \ln(S_3)}n\right) \\\\ = \exp\left(\lim_{n\to\infty} \frac{\ln\left(n \times \frac{S_2}n\right) + \ln\left(n \times \frac{S_3}n\right)}n\right)[/tex]
Then
[tex]\displaystyle \lim_{n\to\infty} \sqrt[n]{S_2 \times S_3} = e^0 = \boxed{1}[/tex]
A plot of the limand for n = first 1000 positive integers suggests the limit is correct, but convergence is slow.

Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.