Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]
[tex] \large{\boxed{\sf Hypotenuse = 16.97\ cm }}[/tex]
Hypotenuse=16.97 cm
Step-by-step explanation:
Here it is given that the area of a right isosceles ∆ is 72 cm² . Let us assume that each equal side is x . Therefore the height and the base of the ∆ will be same that is x .
p
[tex] \begin{gathered}\sf\qquad\longrightarrow [/tex]
Area =\dfrac{1}{2}(base)(height)\\\end{gathered}⟶Area=21(base)(height)
[tex] \begin{gathered}\sf\qquad\longrightarrow[/tex]
[tex] 72cm^2=\dfrac{1}{2}(x)(x)\\\end{gathered} [/tex]
⟶72cm2=21(x)(x)
[tex] \begin{gathered}\sf\qquad\longrightarrow x^2=[/tex]
144cm^2\\\end{gathered}⟶x2=144cm2
[tex] \begin{gathered}\sf\qquad\longrightarrow x[/tex]
[tex] =\sqrt{144cm^2}\\\end{gathered}⟶x=144cm2 [/tex]
[tex]\sf\qquad\longrightarrow \pink{x = 12cm }⟶x=12cm [/tex]
Hence we may find hypotenuse using Pythagoras Theorem as ,
[tex] \sf\qquad\longrightarrow h =\sqrt{ p^2+b^2}⟶h=p2+b2 [/tex]
Here p = b = 12cm ,
[tex] \begin{gathered}\sf\qquad\longrightarrow h =\sqrt{ (12cm)^2+(12cm)^2}\\\end{gathered} [/tex]
⟶h=(12cm)2+(12cm)2
[tex] \begin{gathered}\sf\qquad\longrightarrow h [/tex]
[tex] =\sqrt{144cm^2+144cm^2}\\\end{gathered}[/tex]
⟶h=144cm2+144cm2
[tex] \begin{gathered}\sf\qquad\longrightarrow h[/tex]
=\sqrt{288cm^2}\\\end{gathered}⟶h=288cm2
[tex] \sf\qquad\longrightarrow \pink{ hypotenuse=[/tex]
16.97cm }⟶hypotenuse=16.97cm
Hence the hypotenuse is 16.97 cm .
[/tex]
Answer:
$864
Step-by-step explanation:
100-10 = 90/100= 0.9 (multiplier)
1200*0.9= 1080
100-20 = 80/100= 0.8 (2nd multiplier)
1080*0.8= 864
hope this helps
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.