Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
[tex]
[tex] \large{\boxed{\sf Hypotenuse = 16.97\ cm }}[/tex]
Hypotenuse=16.97 cm
Step-by-step explanation:
Here it is given that the area of a right isosceles ∆ is 72 cm² . Let us assume that each equal side is x . Therefore the height and the base of the ∆ will be same that is x .
p
[tex] \begin{gathered}\sf\qquad\longrightarrow [/tex]
Area =\dfrac{1}{2}(base)(height)\\\end{gathered}⟶Area=21(base)(height)
[tex] \begin{gathered}\sf\qquad\longrightarrow[/tex]
[tex] 72cm^2=\dfrac{1}{2}(x)(x)\\\end{gathered} [/tex]
⟶72cm2=21(x)(x)
[tex] \begin{gathered}\sf\qquad\longrightarrow x^2=[/tex]
144cm^2\\\end{gathered}⟶x2=144cm2
[tex] \begin{gathered}\sf\qquad\longrightarrow x[/tex]
[tex] =\sqrt{144cm^2}\\\end{gathered}⟶x=144cm2 [/tex]
[tex]\sf\qquad\longrightarrow \pink{x = 12cm }⟶x=12cm [/tex]
Hence we may find hypotenuse using Pythagoras Theorem as ,
[tex] \sf\qquad\longrightarrow h =\sqrt{ p^2+b^2}⟶h=p2+b2 [/tex]
Here p = b = 12cm ,
[tex] \begin{gathered}\sf\qquad\longrightarrow h =\sqrt{ (12cm)^2+(12cm)^2}\\\end{gathered} [/tex]
⟶h=(12cm)2+(12cm)2
[tex] \begin{gathered}\sf\qquad\longrightarrow h [/tex]
[tex] =\sqrt{144cm^2+144cm^2}\\\end{gathered}[/tex]
⟶h=144cm2+144cm2
[tex] \begin{gathered}\sf\qquad\longrightarrow h[/tex]
=\sqrt{288cm^2}\\\end{gathered}⟶h=288cm2
[tex] \sf\qquad\longrightarrow \pink{ hypotenuse=[/tex]
16.97cm }⟶hypotenuse=16.97cm
Hence the hypotenuse is 16.97 cm .
[/tex]
Answer:
$864
Step-by-step explanation:
100-10 = 90/100= 0.9 (multiplier)
1200*0.9= 1080
100-20 = 80/100= 0.8 (2nd multiplier)
1080*0.8= 864
hope this helps
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.