Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex] \large{\boxed{\sf Hypotenuse = 16.97\ cm }}[/tex]
Hypotenuse=16.97 cm
Step-by-step explanation:
Here it is given that the area of a right isosceles ∆ is 72 cm² . Let us assume that each equal side is x . Therefore the height and the base of the ∆ will be same that is x .
p
[tex] \begin{gathered}\sf\qquad\longrightarrow [/tex]
Area =
[tex]\dfrac{1}{2}(base)(height)\\\end{gathered}[/tex]
⟶Area=21(base)(height)
[tex] \begin{gathered}\sf\qquad\longrightarrow[/tex]
[tex] 72cm^2=\dfrac{1}{2}(x)(x)\\\end{gathered} [/tex]
⟶72cm2=21(x)(x)
[tex] \begin{gathered}\sf\qquad\longrightarrow x^2=[/tex]
144cm^2\\\end{gathered}⟶x2=144cm2
[tex] \begin{gathered}\sf\qquad\longrightarrow x[/tex]
[tex] =\sqrt{144cm^2}\\\end{gathered}⟶x=144cm2 [/tex]
[tex]\sf\qquad\longrightarrow \pink{x = 12cm }⟶x=12cm [/tex]
Hence we may find hypotenuse using Pythagoras Theorem as ,
[tex] \sf\qquad\longrightarrow h =\sqrt{ p^2+b^2}⟶h=p2+b2 [/tex]
Here p = b = 12cm ,
[tex]\begin{gathered}\sf\qquad\longrightarrow h [/tex]
=\sqrt{ (12cm)^2+(12cm)^2}\\\end{gathered} [/tex]
⟶h=(12cm)2+(12cm)2
[tex] \begin{gathered}\sf\qquad\longrightarrow h[/tex]
[tex] =\sqrt{144cm^2+144cm^2}\\\end{gathered}[/tex]
⟶h=144cm2+144cm2
[tex] \begin{gathered}\sf\qquad\longrightarrow h[/tex]
=\sqrt{288cm^2}\\\end{gathered}⟶h=288cm2
[tex] \sf\qquad\longrightarrow \pink{ hypotenuse=[/tex]
16.97cm }⟶hypotenuse=16.97cm
Hence the hypotenuse is 16.97 cm .
[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.